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Abstract.19

Background: Alzheimer’s disease (AD) is a neurodegenerative condition driven by multifactorial etiology. Mild cognitive
impairment (MCI) is a transitional condition between healthy aging and dementia. No reliable biomarkers are available to
predict the conversion from MCI to AD.
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Objective: To evaluate the use of machine learning (ML) on a wealth of data offered by the Alzheimer’s Disease Neuroimaging
Initiative (ADNI) and Alzheimer’s Disease Metabolomics Consortium (ADMC) database in the prediction of the MCI to AD
conversion.

23

24

25

Methods: We implemented an ML-based Random Forest (RF) algorithm to predict conversion from MCI to AD. Data
related to the study population (587 MCI subjects) were analyzed by RF as separate or combined features and assessed for
classification power. Four classes of variables were considered: neuropsychological test scores, AD-related cerebrospinal
fluid (CSF) biomarkers, peripheral biomarkers, and structural magnetic resonance imaging (MRI) variables.
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2 N. Massetti et al. / A Machine Learning Approach for the AD Spectrum

Results: The ML-based algorithm exhibited 86% accuracy in predicting the AD conversion of MCI subjects. When assessing
the features that helped the most, neuropsychological test scores, MRI data, and CSF biomarkers were the most relevant in
the MCI to AD prediction. Peripheral parameters were effective when employed in association with neuropsychological test
scores. Age and sex differences modulated the prediction accuracy. AD conversion was more effectively predicted in females
and younger subjects.
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Conclusion: Our findings support the notion that AD-related neurodegenerative processes result from the concerted activity
of multiple pathological mechanisms and factors that act inside and outside the brain and are dynamically affected by age
and sex.
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INTRODUCTION30

Alzheimer’s disease (AD) is one of the most preva-31

lent causes of early-onset dementia [1]. Clinical and32

epidemiological evidence indicate that AD-related33

pathological changes occur decades before the onset34

of clinical symptoms [2–4]. Mild cognitive impair-35

ment (MCI) is a critical prodromal phase of AD36

that offers a window of opportunity for therapeutic37

intervention [5, 6]. A few highly debated disease-38

modifying options are becoming available [7–12]. On39

the other hand, a growing body of evidence shows40

that prevention strategies may delay AD onset and41

progression [13–21]. Therefore, the development of42

cost-effective approaches to identify MCI subjects at43

risk of conversion to dementia and who will benefit44

from early therapeutic intervention is paramount.45

To date, the clinical identification of the MCI stage46

has been achieved through the combined implemen-47

tation of neuropsychological tests, the use of brain48

magnetic resonance imaging (MRI) scans, and the49

evaluation of altered levels of AD-related proteins50

[(i.e., amyloid-� and tau in the cerebrospinal fluid51

(CSF) or brain parenchyma] [5, 6, 22].52

Machine learning (ML) is a computer science53

field that provides computational tools to perform54

automated data classification and generate event pre-55

dictions. ML is finding a variety of applications56

in medicine and neurology [23, 24]. Applied to57

dementia, the approach can help capture the com-58

plex molecular interactions of pathogenic events that59

occur in the early AD stages and/or facilitate disease60

progression [24, 25]. For instance, ML, fed with MRI61

data relative to subtle structural brain changes, has62

successfully helped unravel the disease continuum63

that spans from brain aging to AD via MCI [26–30].64

Accuracy higher than 80% has also been achieved by65

employing multimodal approaches that combine the66

computation of detailed MRI-based measurements,67

the analysis of brain or CSF alterations of amyloid- 68

� and tau levels, neuropsychological and behavioral 69

tests, and dementia-related omics [31–36]. 70

The use of such a wide array of biomarkers 71

has been mainly limited to changes occurring within 72

the central nervous system (CNS). However, promis- 73

ing alternative diagnostic venues are now offered 74

by using systems medicine and network-based ap- 75

proaches and evaluating peripheral and systemic 76

changes [37–40]. The implementation of this holistic 77

strategy relies on the notion that that chronic diseases, 78

including dementia, are likely the result of converg- 79

ing perturbations of complex intra- and intercellular 80

networks as well as alterations that occur at many 81

levels and are not limited to one organ or driven by 82

a single molecular factor or pathogenic mechanism 83

[41–46]. 84

Moving from this conceptual framework, we have 85

employed an ML-based approach to identify, in a 86

cohort of 587 MCI subjects, individuals more prone to 87

convert to dementia. To that aim by taking advantage 88

of the wealth of data that reflect pathogenic events 89

occurring inside as well as outside of the CNS. The 90

study evaluated data obtained from the Alzheimer’s 91

Disease Neuroimaging Initiative (ADNI) database 92

and implemented an ML-based Random Forest (RF) 93

algorithm [47]. 94

METHODS 95

Data used in the preparation of this article 96

were obtained from the ADNI database (http://adni. 97

loni.usc.edu). ADNI is a public-private reposi- 98

tory of clinical, imaging, genetic, and biochemical 99

biomarker data obtained from North American sub- 100

jects or patients (http://www.adni-info.org). ADNI 101

aims to identify the determinant processes leading to 102

AD and diagnose pathological changes occurring at 103

http://adni.loni.usc.edu
http://www.adni-info.org
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the earliest stage. All ADNI data collected at baseline104

were downloaded and managed with custom-made105

R-written codes.106

Subjects107

Subjects considered in this study were patients108

diagnosed with MCI extracted from the cohorts of109

ADNI-1, ADNI-GO, ADNI-2, and ADNI-3. The110

inclusion criteria were the ones provided by the ADNI111

protocol. Thus, all subjects were classified as MCI112

based on memory deficits but the relative preser-113

vation of other cognitive domains and maintained114

autonomy in the activities of daily living (http://adni.115

loni.usc.edu/study-design). To be included in the116

analysis, the subjects need to have completed all the117

baseline neuropsychological assessments. Subjects118

were followed for at least 36 months. The timeframe119

was chosen considering that MCI subjects have a high120

probability of converting to AD within 30 months121

[48].122

All the variables included in the database were123

grouped into four classes: psychometric features,124

MRI-related data, AD-related biomarkers, and peri-125

pheral biomarkers.126

Psychometric variables127

Psychometric variables included neuropsycholog-128

ical test scores. For each subject, sixteen neuropsy-129

chological tests were employed to assess the status of130

different cognitive domains. The neuropsychological131

dataset included the Alzheimer’s Disease Assess-132

ment Scale-Cognitive (ADAS-Cog), subscales used133

to evaluate the severity of memory, learning, lan-134

guage (production and comprehension), praxis, and135

orientation deficits [49, 50]; the Mini-Mental State136

Examination [51] used to assess global cognition;137

the 30-item Boston Naming Test [52] and the Ani-138

mal Fluency [53] to evaluate semantic memory and139

language abilities; the Functional Activities Ques-140

tionnaire (FAQ) for the assessment of daily living141

activities [54]; the Rey Auditory Verbal Learning142

Test and Logical Memory II, subscales of the Wech-143

sler Memory Scale-Revised (WMS-R) to investigate144

recall and recognition [55, 56]; the Trail Making145

Test [57], part A and B (time to completion) to146

assess attention/executive functions; the Clock Draw-147

ing Test to evaluate attention, working and visual148

memory, and auditory comprehension [58]; the Clin-149

ical Dementia Rating Scale to quantify the patients’150

severity of cognitive impairment related to the auton-151

omy in daily living activities [59]. Supplementary152

Table 1 summarizes the domains and cognitive func- 153

tions investigated by each test. 154

AD-related biomarkers 155

AD-related biomarkers included CSF levels of 156

amyloid-� peptide 1–42 (A�42), total-Tau (t-Tau), 157

phosphorylated-Tau (p-Tau), and p-Tau/A�42 ratio. 158

The APOE �4 genotype [60] was included. The 159

procedures of acquisition, stocking, processing, and 160

analysis of the biospecimens are available online (see 161

http://adni.loni.usc.edu/methods/documents/). 162

Peripheral biomarkers 163

Peripheral biomarkers were obtained from the 164

human plasma and serum. Supplementary Table 2 165

shows all the biospecimens considered in this work. 166

The biospecimen selection—within the datasets 167

available on the ADNI database (Biospecimen 168

Inventory, http://adni.loni.usc.edu)—was made by 169

considering the number of samples and the consis- 170

tency of measurements within the different phases 171

of the ADNI project (ADNI-1, ADNI-GO, ADNI- 172

2, ADNI-3). To meet the second criterion and reduce 173

the incidence of human error, we considered only data 174

produced through automated techniques. 175

MRI variables 176

MRI variables included cortical thickness values 177

and normalized volumes of relevant deep structures, 178

as shown in Supplementary Table 3. Specifically, 179

the MRI data downloaded from the ADNI data- 180

base (Image Collections, http://adni.loni.usc.edu) 181

were acquired with a Philips 3T scanner (see details 182

at http://adni.loni.usc.edu/wp-content/uploads/2010/ 183

05/ADNI2 MRI Training Manual FINAL.pdf), th- 184

ereby limiting bias and technical issues related to 185

the use of different scanner types or brands. T1- 186

weighted images were acquired using 3D Turbo 187

Field-Echo sequences (slice thickness = 1.2 mm; rep- 188

etition time/echo time = 6.8/3.1 ms). The structural 189

MRI analysis was performed with Freesurfer (ver- 190

sion 6.0). Automatic reconstruction and labeling of 191

cortical and subcortical regions was achieved with the 192

“recon-all-all” command line, according to Desikan- 193

Killiany Atlas [61]. The volumes of the brain regions, 194

computed with asegstats2table, were normalized by 195

dividing to the total intracranial volume of each 196

patient, while the thicknesses of the brain areas 197

considered are those calculated automatically by 198

aparcstats2table.

http://adni.loni.usc.edu/study-design
http://adni.loni.usc.edu/methods/documents/
http://adni.loni.usc.edu
http://adni.loni.usc.edu
http://adni.loni.usc.edu/wp-content/uploads/2010/05/ADNI2_MRI_Training_Manual_FINAL.pdf
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ML analysis199

Our ML approach used an RF algorithm as imple-200

mented by the scikit-learn library [62] written in201

Python. The RF is a supervised non-linear classifier.202

Its operation is based on the construction of binary203

decision trees obtained with the Bagging sampling204

method (an acronym for bootstrap aggregating) [63].205

This model was chosen due to its robust performance206

and stableness over an extensive range of parameters.207

Furthermore, the model is independent of the distri-208

bution of data and exhibits significant multi-class and209

advanced data-mining capabilities [64].210

During the training phase, the algorithm explored211

the non-linear interactions between ADNI variables212

(or features) of the study subjects divided into two213

classes: individuals who converted to AD during214

the follow-up (cMCI) or not (ncMCI). The goal215

at this stage was to identify the best subdivision/216

classification strategy.217

In the training phase, the RF analyzed 85% of the218

dataset’s subjects (who were randomly extracted). We219

used grid search and random search as hyperparam-220

eters optimization techniques [65]. Specifically, we221

focused on the number of trees, the depth of each222

tree, the number of samples for leaf, and the number223

of variables. Once the training phase was completed,224

we assessed feature importance to understand the role225

of each variable in the production of the classification226

and decision process. After the training, we entered227

the testing phase, and the RF strategy was applied to228

the remaining 15% of the dataset.229

After a global analysis of the entire sample of230

MCI patients, the cohort was divided into four groups231

according to age quartiles (age brackets: 55–68,232

69–74, 75–78, 79–88 years old). The RF was then233

repeated on the four groups separately. Differences234

due to sex were evaluated by analyzing separately235

male and female subjects.236

RF performance in classifying cMCI and ncMCI237

subjects was assessed by taking into account accu-238

racy values (ACC), positive predictive values (PPV),239

negative predictive values (NPV), sensitivity, and240

specificity.241

RESULTS242

Demographics and baseline data243

Of the overall sample of 587 MCI patients, 236244

(40%) converted to AD (cMCI) within the 36-month245

follow-up. Of these, 42% were males, and the mean246

Table 1
Demographics and baseline features of the cohort. The table illus-

trates the demographics of the MCI cohort at baseline

MCI (n = 587)

Sex (female/male) 235/352
Age (y)∗ 72.9 ± 7.4
Education (y)∗ 15.9 ± 2.7
MMSE∗ 27.5 ± 1.8
ADAS13∗ 17.0 ± 6.7
APOE �4 (Non-carrier/Het/Homo) 290/229/68

Age and sex stratification Numerosity (% of converters)

55–68 years old
F 72 (32%)
M 74 (23%)

69–74 years old
F 68 (47%)
M 100 (38%)

75–78 years old
F 37 (43%)
M 83 (43%)

79–88 years old
F 58 (47%)
M 95 (49%)

ADAS13, Alzheimer’s Disease Assessment Scale-Cognitive
subscale-13 items score at baseline; APOE �4 (Non-carrier / Het-
erozygous carrier / Homozygous carrier), apolipoprotein E �4
allele status; MCI, mild cognitive impairment; MMSE, Mini-
Mental State Examination score at baseline. The asterisk indicates
mean values followed by standard deviations. The other values
represent the number of subjects falling in each category.

age was 74.0 ± 7.1 years. The remaining 351 (39% 247

males, mean age 72.2 ± 7.4 years) remained clini- 248

cally stable (ncMCI). The demographics and baseline 249

data of the study cohort are summarized in Table 1. 250

Global analysis 251

The use of RF allows the analysis of the fea- 252

tures that offer the best predictive power. In our 253

study, the RF-related features that had the higher 254

impact in helping to identify cMCI subjects were 255

psychometric data in combination with AD-related 256

biomarkers (ACC = 0.86, sensitivity = 0.73 and speci- 257

ficity = 0.93) or MRI parameters (ACC = 0.83, 258

sensitivity = 0.70 and specificity = 0.93) (Table 2). 259

The combined use of AD biomarkers and MRI data 260

also generated good accuracy (ACC = 0.81, sensitiv- 261

ity = 0.69 and specificity = 0.89). 262

Furthermore, on a ranking scale, psychometric 263

variables at baseline were the most accurate classi- 264

fiers (ACC = 0.80, sensitivity = 0.81 and specificity = 265

0.79), followed by MRI-related data (ACC = 0.75, 266

sensitivity = 0.64 and specificity = 0.85) and AD- 267

related biomarkers (ACC = 0.70, sensitivity = 0.77 268
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Table 2
Random forest (RF) prediction performance for MCI conversion to AD within 36 months. The table depicts the RF ability to correctly
classify converter and non-converter MCI subjects (cMCI and ncMCI, respectively) in the test dataset (15% of the total sample size). The

ranking is based on accuracy values

Accuracy PPV NPV Sensitivity Specificity Total
sample size

Psychometric + AD-related biomarkers 0.86 0.84 0.87 0.73 0.93 422
Psychometric + MRI 0.83 0.88 0.81 0.70 0.93 318
AD-related biomarkers + MRI 0.81 0.82 0.81 0.69 0.89 209
Psychometric + peripheral biomarkers 0.80 0.72 1.00 1.00 0.58 266
Psychometric 0.80 0.68 0.88 0.81 0.79 587
MRI 0.75 0.77 0.73 0.64 0.85 318
AD-related biomarkers 0.70 0.54 0.85 0.77 0.67 422
MRI + peripheral biomarkers 0.70 0.64 0.88 0.93 0.47 194
AD-related biomarkers + peripheral biomarkers 0.65 0.63 1.00 1.00 0.12 128
Peripheral biomarkers 0.60 0.57 0.80 0.95 0.21 266

Measurements of accuracy, predictive values, sensitivity, and specificity refer to performances obtained from the test dataset. AD,
Alzheimer’s disease; AD-related biomarkers, CSF biomarkers of neurodegeneration + APOE �4; MCI, mild cognitive impairment; MRI,
magnetic resonance imaging biomarkers; NPV, Negative Predictive Value; Peripheral biomarkers, amino acids + bile acids + energetic sub-
strates + purines + systemic indices + triglycerides and cholesterol; PPV, Positive Predictive Value; Psychometric, neuropsychological tests.
See Supplementary Tables for detailed variables enclosed in each category.

and specificity = 0.67). Peripheral biomarkers exhib-269

ited lower predicting accuracy (0.60) and PPV (0.57)270

but retained very high sensitivity (0.95) and NPV271

(0.80). Single variables, ranked by their prediction272

value, are shown in Fig. 1. Baseline neuropsycholog-273

ical test scores relative to memory deficits and global274

cognitive functioning were the most relevant factors275

to help predict the conversion to AD. As for the MRI276

structural data, the evaluation of the degrees of atro-277

phy (as assessed in terms of cortical thickness and278

subcortical volumes of temporal lobe structures) was279

associated with the most predictive value. As for the280

AD-related biomarkers, the p-Tau/A� ratio generated281

the highest informative value. Interestingly, periph-282

eral features also helped the RF decision process. Of283

note, in this group, bile acids (BA) were found to284

provide the most significant aid to predict conversion.285

Supplementary Figure 1 depicts the ranking scale286

for combinations of feature groups that generated287

accuracy values greater or equal to 0.80.288

Age stratification289

RF results, stratified according to four age brack-290

ets, indicated that the prediction process was always291

more effective in the younger group (Table 3). In the292

case of some features (i.e., MRI data and AD-related293

biomarkers), a “plateau” phase could be identified.294

Conversely, the prediction accuracy based on psy-295

chometric variables steadily declined over time (from296

0.86 to 0.70). Figure 2 depicts the variable stratifica-297

tion upon the four age brackets.

Sex stratification 298

Finally, we investigated sex differences in the pre- 299

dictive performance of the algorithm. As shown in 300

Table 4, the accuracy was higher in female sub- 301

jects. Differences in RF accuracy were modest for 302

some classes (i.e., MRI data, AD-related biomark- 303

ers, psychometric scores). They became more robust 304

in the case of peripheral biomarkers (ACC = 0.73 for 305

females versus 0.57 for males). When considering 306

the order of importance (Fig. 3), higher anatom- 307

ical and functional relevance were observed for 308

frontal lobe-related data (i.e., MRI and TRAIL-B 309

scores) of male patients. RF also showed differ- 310

ences in peripheral biomarker relevance (Fig. 3). In 311

that respect, glutamine was the most significant vari- 312

able in both groups. Sex-related differences emerged. 313

HDL cholesterol and butyrate were more helpful in 314

predicting the conversion process of females, while 315

pyruvate was most helpful in male subjects. BA levels 316

were highly relevant in both groups. 317

DISCUSSION 318

This study investigated which combination of 319

ADNI-related data was the most effective for pre- 320

dicting the MCI conversion to dementia. To that aim, 321

we took into account neuropsychological test scores, 322

CSF levels of AD-related proteins, detailed structural 323

MRI features, and peripheral biomarkers (Table 2). 324

The ADNI database has been used by many authors to 325

classify patients using ML algorithms [66–71]. In line 326
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Fig. 1. (Continued)
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Fig. 1. Global analysis. Features importance obtained in the Random Forest performed on the train dataset (85% of MCI subjects). The
figure contains the classes which showed an accuracy value greater or equal to 0.80 in the test dataset (i.e., psychometric tests, AD-related
biomarkers, structural MRI and peripheral biomarker, see Table 2). For each class, the histograms depict the weight, or importance, of
each feature in the training phase of the machine learning. The importance scores range from 0 to 1, with higher values indicating greater
weight in the classification process. AD biomarkers, Alzheimer’s disease-related biomarkers including cerebrospinal fluid biomarkers
of neurodegeneration + APOE �4; MCI, mild cognitive impairment; MRI, magnetic resonance imaging; Peripheral biomarkers, amino
acids + bile acids + energetic substrates + purines + systemic indices + triglycerides and cholesterol; Psychometric, neuropsychological tests.
See Supplementary Tables for detailed variables enclosed in each category.

Table 3
Random Forest (RF) prediction performance for MCI conversion to AD within 36 months, after age stratification. The table depicts the RF
ability to correctly classify converter and non-converter MCI subjects (cMCI and ncMCI, respectively) in the test dataset (15% of the total

sample size), after the division of the whole cohort in four age quartiles. The ranking is based on accuracy values

Age Accurary PPV NPV Sensitivity Specificity Total
sample size

Psychometric 55–68 0.86 0.86 86.7 0.75 0.93 146
69–74 0.81 0.63 88.9 0.71 0.84 168
75–78 0.72 0.40 84.6 0.50 0.79 120
79–88 0.70 0.60 76.9 0.67 0.71 153

MRI 55–68 0.85 1.00 0.83 0.33 1.00 86
69–74 0.77 0.78 0.75 0.88 0.60 84
75–78 0.80 1.00 0.71 0.60 1.00 65
79–88 0.77 1.00 0.57 0.67 1.00 83

Peripheral biomarkers 55–68 1.00 1.00 1.00 1.00 1.00 43
69–74 0.75 0.57 1.00 1.00 0.62 75
75–78 0.62 0.67 0.50 0.80 0.33 50
79–88 0.53 0.50 0.67 0.86 0.25 98

AD-related biomarkers 55–68 0.84 1.00 0.83 0.25 1.00 123
69–74 0.72 0.43 0.91 0.75 0.71 118
75–78 0.71 0.80 0.67 0.57 0.86 92
79–88 0.71 0.67 0.80 0.86 0.57 89

Psychometric + AD-related biomarkers 55–68 0.94 100 0.94 0.75 1.00 123
69–74 0.89 57.1 1.00 1.00 0.79 118
75–78 0.85 100 0.78 0.71 1.00 92
79–88 0.85 100 0.78 0.71 1.00 89

Psychometric + MRI 55–68 1.00 1.00 1.00 1.00 1.00 86
69–74 0.84 0.88 0.80 0.88 0.80 84
75–78 0.90 1.00 0.83 0.80 1.00 65
79–88 0.77 0.88 0.60 0.78 0.75 83

Psychometric + peripheral biomarkers 55–68 0.86 0.75 1.00 1.00 0.75 43
69–74 0.50 0.38 0.75 0.75 0.38 75
75–78 0.87 0.83 1.00 1.00 0.67 50
79–88 0.80 0.70 1.00 1.00 0.62 98

Measurements of accuracy, predictive values, sensitivity, and specificity refer to performances obtained from the test dataset. AD,
Alzheimer’s disease; AD-related biomarkers, CSF biomarkers of neurodegeneration + APOE �4; MCI, mild cognitive impairment; MRI,
magnetic resonance imaging biomarkers; NPV, Negative Predictive Value; Peripheral biomarkers, amino acids + bile acids + energetic sub-
strates + purines + systemic indices + triglycerides and cholesterol; PPV, Positive Predictive Value; Psychometric, neuropsychological tests.
See Supplementary Tables for detailed variables enclosed in each category.

with our study, some studies had used an RF-based327

classification strategy on structural MRI features [67,328

68]. However, contrary to our study, these single-329

modality reports had used, in the training phase,330

mixed cohorts of healthy controls, ncMCI/cMCI and331

AD subjects [67, 68]. Conversely, we employed a332

multimodal approach and embraced a holistic view-333

point of the disease. Our prediction model supports334

the notion of neurodegenerative processes as the con-335

verging point of pathological processes occurring336

inside and outside the brain, factors also affected by 337

age and sex-related factors. 338

ML is a powerful tool that significantly helps the 339

diagnostic and therapeutic process, but care should 340

be applied to maximize its heuristic power [24, 341

26–29, 31–35]. Applied to AD, evidence indicates 342

that ML performances are greatly influenced by the 343

time extent of the conversion process. Indeed a recent 344

systematic review [72] assessing ML approaches 345

employed to predict the conversion to AD of MCI 346
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Fig. 2. Age stratification. Features importance for psychometric tests obtained in the Random Forest performed on the train dataset (85%
of MCI subjects). The figure shows the results of the whole cohort stratification according to four age quartiles. For each age bracket, the
histograms depict the weight, or importance, of the psychometric tests’ features in the training phase of the machine learning. The importance
scores range from 0 to 1, with higher values indicating greater weight in the classification process. See Supplementary Table 2 for detailed
variables enclosed in the Psychometric category.

Table 4
Random Forest (RF) prediction performance for MCI conversion to AD within 36 months, after sex stratification. The table depicts the RF
ability to correctly classify converter and non-converter MCI subjects (cMCI and ncMCI, respectively) in the test dataset (15% of the total

sample size), after the division of the whole cohort in two groups (male and female subjects). The ranking is based on accuracy values

Sex Accuracy PPV NPV Sensitivity Specifity Total
sample size

Psychometric Female 0.86 0.86 0.87 0.75 0.93 235
Male 0.81 0.63 0.89 0.71 0.84 352

MRI Female 0.79 0.57 0.92 0.80 0.79 121
Male 0.73 0.70 0.75 0.58 0.83 197

Peripheral biomarkers Female 0.73 0.71 1.00 1.00 0.20 96
Male 0.57 0.47 0.78 0.80 0.44 170

AD-related biomarkers Female 0.81 0.64 1.00 1.00 0.72 175
Male 0.79 0.83 0.77 0.62 0.91 247

Psychometric + AD-related biomarkers Female 0.89 0.80 0.94 0.89 0.89 175
Male 0.87 0.92 0.84 0.75 0.95 247

Psychometric + MRI Female 0.95 1.00 0.93 0.80 1.00 121
Male 0.80 0.73 0.87 0.85 0.76 197

Psychometric + Peripheral biomarkers Female 0.87 0.83 1.00 1.00 0.60 96
Male 0.58 0.47 0.78 0.8 0.44 170

Measurements of accuracy, predictive values, sensitivity, and specificity refer to performances obtained from the test dataset. AD,
Alzheimer’s disease; AD-related biomarkers, CSF biomarkers of neurodegeneration + APOE �4; MCI, mild cognitive impairment; MRI,
magnetic resonance imaging biomarkers; NPV, Negative Predictive Value; Peripheral biomarkers, amino acids + bile acids + energetic sub-
strates + purines + systemic indices + triglycerides and cholesterol; PPV, Positive Predictive Value; Psychometric, neuropsychological tests;
See Supplementary Tables for detailed variables enclosed in each category.
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Fig. 3. Sex stratification. Features importance obtained in the Random Forest performed on the train dataset (85% of MCI subjects).
The figure contains some classes shown in Table 4 (i.e., psychometric tests, structural MRI and peripheral biomarkers) which showed
differences following sex stratification. For each class, the histograms depict the weight, or importance, of each feature in the training
phase of the machine learning. The importance scores range from 0 to 1, with higher values indicating greater weight in the classification
process. MCI, mild cognitive impairment; MRI, magnetic resonance imaging: Peripheral biomarkers, amino acids + bile acids + energetic
substrates + purines + systemic indices + triglycerides and cholesterol; Psychometric, neuropsychological tests. See Supplementary Tables
for detailed variables enclosed in each category.

subjects indicates that optimal results can be pro-347

duced with the implementation of a 3-year follow-up.348

The same review [72] suggested that the composition349

of the cohort should be carefully chosen accordingly350

to the ML-based approach that one is implementing.351

In the final analysis, we employed longitudinal data352

to test the RF accuracy to predict AD progression,353

taking advantage of a dataset of MCI patients not354

previously used in the ML training phase. The 355

analysis did not consider possible confounders like 356

baseline comorbidities, ethnicity, lifestyle, living 357

environment (i.e., urban versus rural areas), gener- 358

ating accuracy bias. 359

Combining baseline psychometric variables and 360

AD-related biomarkers produced significant (> 0.85) 361

accuracy (Table 2). Overall, “classic” AD biomarkers 362
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(i.e., psychometric test scores, CSF levels of363

AD-related biomarkers + APOE status, and brain364

MRI data) were the most accurate predictors for365

conversion.366

Our RF-based approach indicated that, among psy-367

chometric data, verbal memory test scores, ADAS368

scales, and FAQ parameters were the most significant369

classifiers. It should be stressed that ADAS scales370

evaluate in great detail the overall cognitive status371

[73]. However, in routine clinical settings, the MMSE372

is preferred to the ADAS13 or 11 tests. Surprisingly,373

our RF found that MMSE scores were the least valu-374

able classifiers. MMSE became relevant only after375

the age stratification of the cohort (as shown by376

Fig. 2). The different predictive weights of the two377

tests can be explained by their distinct score struc-378

ture and overall purpose. The MMSE was created379

as an easy-to-use clinical tool, while the ADAS is380

more research-oriented [73]. The score range is also381

different, more granular (0–70 points) in the ADAS382

than the limited MMSE 30 points. Thus, the ADAS is383

more sensitive and specific and offers a more detailed384

scale of values to assess subtle cognitive abnormali-385

ties [74].386

Our RF fed with CSF biomarker values and MRI387

data confirmed the higher relevance of the p-Tau/A�388

ratio and levels of temporal lobe atrophy (Fig. 1).389

These results are in line with a large body of evi-390

dence supporting the temporal lobe’s strategic role391

for memory-related tasks [75–78].392

Sex-related analysis revealed that data relative393

to the atrophy of the medial orbital cortex were394

helping the predictive process only for the male395

group, thereby suggesting the presence of sex-related396

differences in the regional trajectories of the neurode-397

generative processes [79, 80].398

The combination of peripheral biomarkers and399

psychometric measures showed the same predictive400

power of psychometric test scores alone but exhib-401

ited greater sensitivity and predictive values (both402

positive and negative). Thus, one can speculate that,403

in the future, a matrix of peripheral biomarkers and404

neuropsychological tests may be employed as a first-405

line practical and cost-efficient way to facilitate the406

diagnostic process of the early stages of the disease.407

Among all peripheral biomarkers, variations of lev-408

els of glutamine, purine, lipids, and BA were the409

most significant feature to help the RF-based deci-410

sion process (Fig. 1). The results are in accordance411

with findings based on graph modeling that suggest412

that glutamine is a central hub of metabolic imbal-413

ance in the context of dementia [81, 82]. Normal414

glutamate-glutamine cycling (GGC) plays a piv- 415

otal role in cognitive processes, as indicated by the 416

presence of severely disrupted memory processes 417

in hepatic encephalopathy (where high ammonium 418

levels interfere with astrocytic GGC) [83]. Altered 419

levels of glutamine have been frequently found in 420

AD patients’ serum and CSF [84, 85]. The reduced 421

activity of glutamine-synthase in AD patients has also 422

been reported, a phenomenon deemed to impair the 423

glutamate conversion to glutamine [81, 82]. On a 424

speculative note, processes affecting glutamate accu- 425

mulation in astrocytes [85] can concur to induce 426

AD-related excitotoxicity [86–89]. At the same time, 427

the imbalance of the glutamate-glutamine cycle may 428

impinge on other AD-related alterations like the 429

impaired �-aminobutyric acid (GABA) synthesis or 430

changes in anaplerotic reactions that generate mito- 431

chondrial bioenergetic dysfunctions [82]. 432

Lipid and energy-related dysmetabolism have also 433

been previously reported in AD patients [36, 90–92]. 434

Altered blood [93] and brain levels of BA [94] have 435

been described. Interestingly, these metabolites were 436

found to be highly relevant to drive our RF-based 437

predictive process. This intriguing finding is in line 438

with a growing body of evidence supporting the 439

presence of a gut-brain connection in neurodegen- 440

eration [95–100] and the role played by the liver in 441

AD-related processes [96, 97]. The notion is also 442

supported by a recent study indicating the associa- 443

tion between altered BA profiles with higher degrees 444

of brain atrophy, brain hypometabolism (as assessed 445

by FDG-PET), and alterations of CSF AD-related 446

biomarkers in AD patients [93]. 447

These findings also agree with a study in which 448

AD patients exhibited significantly low plasma levels 449

of several medium-chain acylcarnitines [101]. These 450

changes indicate underlying hepatic dysfunctions as 451

most of the fatty acid oxidation, the mechanism that 452

regulates acylcarnitine production [102] is controlled 453

by the liver. Defective hepatic fatty acid oxidation 454

impairs ketogenesis and produces lower levels of 455

plasma ketones [103]. As ketones are the brain’s 456

energy substrates alternative to glucose, the impair- 457

ment of hepatic ketogenesis found in AD patients may 458

exacerbate energetic brain deficits and be a critical 459

aggravating factor in the disease progression. Inter- 460

estingly, in preclinical AD models as well as in MCI 461

or AD patients, ketogenic diets and/or pharmacologic 462

manipulations set to favor ketogenesis have been 463

shown to improve cognitive performances [104–108]. 464

Given the high concentration of lipids within the 465

CNS and the role played by these molecules in 466



U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

N. Massetti et al. / A Machine Learning Approach for the AD Spectrum 11

several neurodegenerative disorders, including AD467

[109–114], lipidomic-based approaches are becom-468

ing diagnostic tools of great potential. In that regard,469

further research on the interplay between lipid dys-470

metabolism and dementia should carefully consider471

sex differences, an emerging and promising area of472

investigation [80].473

Little is known about the imbalance of the purine474

metabolic pathway in AD. A study indicated that475

compared to healthy subjects, AD patients exhibit476

increased serum levels of xanthosine. The study also477

found a significant correlation between high CSF478

levels of purine and t-tau [115]. Reduced levels of479

xanthosine have also been found in the entorhinal480

cortex of deceased AD patients [116].481

To better understand the role of different disease482

modulators along with aging, we stratified the cohort483

into four age brackets and performed an ex-novo RF484

analysis. We found that the accuracy of all the clas-485

sifiers was better in younger patients (Table 3).486

These results support the notion that cognitive487

impairment in older patients results from the patho-488

logical convergence of multiple intermingled factors489

[117, 118].490

Also, it should be emphasized that lipids acting491

as energy substrates may differently affect the fuel492

economy of the brain accordingly with pre-existing493

comorbidity (diabetes, metabolic syndrome, etc.).494

Thus, a current limitation of our study is the lack495

of information on such comorbidity in the investi-496

gated study subjects. Nevertheless, our results align497

with the general view that energetic changes are criti-498

cal early biomarkers of the MCI-AD continuum even499

before the deposition of A� and expression of the500

cognitive decline [119, 120].501

Finally, intriguing findings were generated in an502

RF analysis applied after dividing the cohort accord-503

ing to sex. Predictive performances were better504

in female patients (Table 4), and the most strik-505

ing differences concerned the implementation of506

peripheral biomarkers (ACC = 0.73 for females ver-507

sus 0.57 for males). In that respect, differences508

related to HDL cholesterol levels were more rel-509

evant to help the prediction process in women.510

A potential limitation concerns differences in RF511

performances in the female sub-cohort. The better512

output in this group could be partially justified by513

the difference, when compared to males, in sam-514

ple size and conversion rates per age bracket. These515

results nevertheless support the research endeavor516

on sex-related neurobiology of neurodegeneration517

[79, 80].

CONCLUSIONS 518

AD is a complex and multifactorial condition. 519

The characterization of patients in a prodromal stage 520

of the disease like MCI represents a challenge for 521

biomedical research and unmet clinical and therapeu- 522

tic needs. 523

A monumental effort in financial and human 524

resources has been employed to reduce these aggre- 525

gated proteins in the past thirty years. The rationale 526

behind this strategy is that protein deposits are “toxic” 527

and their physical disaggregation halts the neurode- 528

generative progression [121]. Except for a few highly 529

debated clinical trials, the strategy has failed, thereby 530

casting some fundamental doubts on the construct’s 531

validity [122–126]. 532

Our study, based on a multimodal approach, pro- 533

vides support for a holistic viewpoint of the disease. 534

The valuable performance of our prediction model 535

supports the notion of neurodegenerative processes as 536

the converging point of pathological processes occur- 537

ring inside and outside the brain that are also affected 538

by age and sex-related factors. 539

ML techniques and big-data analysis can help 540

identify novel and unexpected disease features 541

and escape the dogmatic loop we are currently 542

entrapped. For instance, a surprising finding of our 543

study concerns the importance of peripheral bio- 544

markers. 545

This set of combined systemic alterations is the 546

gateway to precision medicine and offers fertile 547

ground for innovative research. Precision medicine, 548

systems medicine, and network-based approaches are 549

in a position to generate tailored diagnoses, predict 550

disease risks, and produce customized treatments that 551

maximize safety and efficacy [43, 46, 79, 117, 118, 552

127]. 553

Finally, a word of caution is needed when rest- 554

ing many diagnostic hopes in implementing AI-based 555

approaches. A bottleneck in using many clinical 556

parameters to be fed into ML is that most are phe- 557

notypic features with no precise alignment with 558

underlying biology. Indeed, as recently suggested 559

[128, 129], clinical phenotypes are considered the 560

phenotypical mirror of distinct, specific, and unique 561

underlying biological features. We believe that a 562

reverse order of development and a switch from 563

phenotypes to biotypes is required in precision 564

medicine-based approaches to neurodegenerative 565

conditions [129]. Indeed, AI-driven strategies may 566

greatly help shift the attention from phenotypes to 567

the importance of individualized biotypes.
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In that vein, we hope our study helps further568

explore ML-based models set to unravel the complex-569

ity of neurodegenerative processes and dementia.570

ACKNOWLEDGMENTS571

The study was funded by the Alzheimer’s Associ-572

ation Part the Cloud: Translational Research Funding573

for Alzheimer’s Disease (PTC) PTC-19-602325 and574

the Alzheimer’s Association - GAAIN Exploration575

to Evaluate Novel Alzheimer’s Queries (GEENA-Q-576

19-596282) (SLS). AG is supported by the European577

Union’s Horizon 2020 Research and Innovation578

Program under the Marie Skłodowska-Curie grant579

agreement iMIND—No. 841665.580

Data collection and sharing for this project was581

funded by the Alzheimer’s Disease Neuroimag-582

ing Initiative (ADNI) (National Institutes of Health583

Grant U01 AG024904) and DOD ADNI (Department584

of Defense award number W81XWH-12-2-0012).585

ADNI is funded by the National Institute on Aging,586

the National Institute of Biomedical Imaging and587

Bioengineering, and through generous contributions588

from the following: AbbVie, Alzheimer’s Asso-589

ciation; Alzheimer’s Drug Discovery Foundation;590

Araclon Biotech; BioClinica, Inc.; Biogen; Bristol-591

Myers Squibb Company; CereSpir, Inc.; Cogstate;592

Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and593

Company; EuroImmun; F. Hoffmann-La Roche Ltd594

and its affiliated company Genentech, Inc.; Fujire-595

bio; GE Healthcare; IXICO Ltd.; Janssen Alzheimer596

Immunotherapy Research & Development, LLC.;597

Johnson & Johnson Pharmaceutical Research &598

Development LLC.; Lumosity; Lundbeck; Merck599

& Co., Inc.; Meso Scale Diagnostics, LLC.; Neu-600

roRx Research; Neurotrack Technologies; Novartis601

Pharmaceuticals Corporation; Pfizer Inc.; Piramal602

Imaging; Servier; Takeda Pharmaceutical Company;603

and Transition Therapeutics. The Canadian Institutes604

of Health Research is providing funds to support605

ADNI clinical sites in Canada. Private sector con-606

tributions are facilitated by the Foundation for the607

National Institutes of Health (http://www.fnih.org).608

The grantee organization is the Northern Califor-609

nia Institute for Research and Education, and the610

study is coordinated by the Alzheimer’s Therapeu-611

tic Research Institute at the University of Southern612

California. ADNI data are disseminated by the Lab-613

oratory for Neuro Imaging at the University of614

Southern California. Data collection and sharing for615

this project was also funded by the Alzheimer’s616

Disease Metabolomics Consortium (National Insti- 617

tute on Aging R01AG046171, RF1AG051550 and 618

3U01AG024904-09S4).] 619

Authors’ disclosures available online (https:// 620

www.j-alz.com/manuscript-disclosures/21-0573r2). 621

SUPPLEMENTARY MATERIAL 622

The supplementary material is available in the 623

electronic version of this article: https://dx.doi.org/ 624

10.3233/JAD-210573. 625

REFERENCES 626

[1] Arvanitakis Z, Shah RC, Bennett DA (2019) Diagnosis and 627

management of dementia: review. JAMA 322, 1589–1599. 628

[2] Hadjichrysanthou C, Evans S, Bajaj S, Siakallis LC, 629

McRae-McKee K, de Wolf F, Anderson RM, Alzheimer’s 630

Disease Neuroimaging Initiative (2020) The dynamics of 631

biomarkers across the clinical spectrum of Alzheimer’s 632

disease. Alzheimers Res Ther 12, 74. 633

[3] Gordon BA, Blazey TM, Su Y, Hari-Raj A, Dincer A, Flo- 634

res S, Christensen J, McDade E, Wang G, Xiong C, Cairns 635

NJ, Hassenstab J, Marcus DS, Fagan AM, Jack CR, Horn- 636

beck RC, Paumier KL, Ances BM, Berman SB, Brickman 637

AM, Cash DM, Chhatwal JP, Correia S, Förster S, Fox 638

NC, Graff-Radford NR, la Fougère C, Levin J, Masters 639

CL, Rossor MN, Salloway S, Saykin AJ, Schofield PR, 640

Thompson PM, Weiner MM, Holtzman DM, Raichle ME, 641

Morris JC, Bateman RJ, Benzinger TLS (2018) Spatial 642

patterns of neuroimaging biomarker change in individu- 643

als from families with autosomal dominant Alzheimer’s 644

disease: a longitudinal study. Lancet Neurol 17, 241–250. 645

[4] McDade E, Wang G, Gordon BA, Hassenstab J, Benzinger 646

TLS, Buckles V, Fagan AM, Holtzman DM, Cairns NJ, 647

Goate AM, Marcus DS, Morris JC, Paumier K, Xiong C, 648

Allegri R, Berman SB, Klunk W, Noble J, Ringman J, 649

Ghetti B, Farlow M, Sperling RA, Chhatwal J, Salloway 650

S, Graff-Radford NR, Schofield PR, Masters C, Rossor 651

MN, Fox NC, Levin J, Jucker M, Bateman RJ, Domi- 652

nantly Inherited Alzheimer Network (2018) Longitudinal 653

cognitive and biomarker changes in dominantly inherited 654

Alzheimer disease. Neurology 91, e1295-e1306. 655

[5] Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos 656

EG, Kokmen E (1999) Mild cognitive impairment. Arch 657

Neurol 56, 303. 658

[6] Albert MS, DeKosky ST, Dickson D, Dubois B, Feld- 659

man HH, Fox NC, Gamst A, Holtzman DM, Jagust 660

WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, 661

Phelps CH (2011) The diagnosis of mild cognitive impair- 662

ment due to Alzheimer’s disease: recommendations from 663

the National Institute on Aging-Alzheimer’s Association 664

workgroups on diagnostic guidelines for Alzheimer’s dis- 665

ease. Alzheimers Dement 7, 270–279. 666

[7] Mintun MA, Lo AC, Duggan Evans C, Wessels AM, 667

Ardayfio PA, Andersen SW, Shcherbinin S, Sparks J, Sims 668

JR, Brys M, Apostolova LG, Salloway SP, Skovronsky 669

DM (2021) Donanemab in early Alzheimer’s disease. N 670

Engl J Med 384, 1691–1704. 671

[8] Swanson CJ, Zhang Y, Dhadda S, Wang J, Kaplow J, 672

Lai RYK, Lannfelt L, Bradley H, Rabe M, Koyama A, 673

http://www.fnih.org
https://www.j-alz.com/manuscript-disclosures/21-0573r2
https://dx.doi.org/10.3233/JAD-210573


U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

N. Massetti et al. / A Machine Learning Approach for the AD Spectrum 13

Reyderman L, Berry DA, Berry S, Gordon R, Kramer LD,674

Cummings JL (2021) A randomized, double-blind, phase675

2b proof-of-concept clinical trial in early Alzheimer’s676

disease with lecanemab, an anti-A� protofibril antibody.677

Alzheimers Res Ther 13, 80.678

[9] Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams679

L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y,680

O’Gorman J, Qian F, Arastu M, Li M, Chollate S, Bren-681

nan MS, Quintero-Monzon O, Scannevin RH, Arnold HM,682

Engber T, Rhodes K, Ferrero J, Hang Y, Mikulskis A,683

Grimm J, Hock C, Nitsch RM, Sandrock A (2016) The684

antibody aducanumab reduces A� plaques in Alzheimer’s685

disease. Nature 537, 50–56.686

[10] Kuller LH, Lopez OL (2021) ENGAGE and EMERGE:687

Truth and consequences? Alzheimers Dement 17,688

692–695.689

[11] Musiek ES, Morris JC (2021) Possible consequences of690

the approval of a disease-modifying therapy for Alzheimer691

disease. JAMA Neurol 78, 141–142.692

[12] Rabinovici GD (2021) Controversy and progress in693

Alzheimer’s disease - FDA approval of Aducanumab. N694

Engl J Med 385, 771–774.695

[13] Rakesh G, Szabo ST, Alexopoulos GS, Zannas AS (2017)696

Strategies for dementia prevention: latest evidence and697

implications. Ther Adv Chronic Dis 8, 121–136.698

[14] Livingston G, Huntley J, Sommerlad A, Ames D, Bal-699

lard C, Banerjee S, Brayne C, Burns A, Cohen-Mansfield700

J, Cooper C, Costafreda SG, Dias A, Fox N, Gitlin LN,701
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